要求解f(x) = x(x-1)(x-2)(x-3)在x=0处的导数f'(0)。 首先,我们可以使用乘法法则计算f'(x)的表达式: f'(x) = (x-1)(x-2)(x-3) + x(x-2)(x-3) + x(x-1)(x-3) + x(x-1)(x-2) = (x-1)(x-2)(x-3) + 2x(x-2)(x-3) + 3x(x-1)(x-3) + 4x(x-1)(x-2)
然后,我们将x替换为0来计算f'(0): f'(0) = (-1)(-2)(-3) + 2(0)(-2)(-3) + 3(0)(-1)(-3) + 4(0)(-1)(-2) = -6 + 0 + 0 + 0 = -6
所以,f'(0) = -6。