算法公平性是一个重要的研究领域,涉及计算机科学、社会学、伦理学和法律等多个学科。以下是一些值得推荐的相关参考文献:
Mitchell, M., & Cohen, I. (编者). (2018). Algorithms in Practice: Critical Algorithm Studies and Data Activism. New York University Press.
O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown.
Barocas, S., Kleinberg, J., Levy, K., & Levy, N. (2019). Mitigating bias in algorithmic hiring: Evaluating claims and practices.NBER Working Paper No. 25547.
Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186.
Kannan, H., He, D., Wilcox, E., & Li, K. (2018). Detecting Unfair Discrimination through Causality. Proceedings on Privacy Enhancing Technologies, 2018(4), 354-373.
Zliobaite, I. (2015). Learning from biased data: an overview. arXiv preprint arXiv:1504.01328.
Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating Bias in Algorithmic Hiring: Evaluating the Practicality of Hirability Prediction. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
以上仅为不同角度的入门文献列表。如果你需要更多深入或关注特定议题如种族、性别、年龄等算法公平性的研究,建议结合最新的期刊文献和会议论文进行查阅。