• 智能AI问答!更聪明、更完整、原创作!
  • 一款基于GPT的超级AI机器人,可以回答问题、聊天、创作、写文案!

根据我给的代码写出具体r语言代码,

发布于 2024-06-12 18:11:35

根据您提供的原始代码和需要改进的地方,以下是具体的R语言代码步骤:

  1. 重新选择滞后阶数: 使用VARselect函数确定最佳滞后阶数。
library(vars)
# 排除年份列,只对煤炭、石油、电力数据进行VAR模型分析
data_ts <- ts(data[,-1], frequency = 1, start = c(1996, 1))

# 选择滞后阶数
VAR_model_candidate <- VARselect(data_ts, lag.max = 12, type="const")
optimal_lag <- which.min(VAR_model_candidate$selection[,"AIC"])

# 输出最佳滞后阶数值
print(paste("Optimal lag order is: ", optimal_lag))
  1. 对数变换数据: 对数据进行对数变换以稳定方差。
# 对数变换
data_transformed <- data.frame(log_coal = log(data_ts[,1]),
                               log_oil = log(data_ts[,2]),
                               log_el = log(data_ts[,3]))

# 将转换后的数据重新转换为时间序列格式
data_ts_transformed <- ts(data_transformed, frequency = 1, start = c(1996, 1))
  1. 拟合新的VAR模型: 使用确定的最佳滞后阶数和变换后的数据拟合新的VAR模型。
# 拟合VAR模型
var_model_improved <- VAR(data_ts_transformed, p = optimal_lag, type="const")
summary(var_model_improved)
  1. 模型诊断: 对新模型进行诊断,检查残差的序列相关性、自相关性、正态性和稳定性。
# 残差序列相关性检验
ser_test_improved <- serial.test(var_model_improved, lags.pt = 12, type = "PT.asymptotic")

# ARCH 残差序列自回归性检验
arch_test_improved <- arch.test(residuals(var_model_improved), lags.multi = 5)

# 正态性检验
norm_test_improved <- normality.test(residuals(var_model_improved))

# 稳定性检验
stab_test_improved <- stability(var_model_improved)

# 输出诊断结果
print(ser_test_improved)
print(arch_test_improved)
print(norm_test_improved)
plot(stab_test_improved)
  1. 脉冲响应与因果关系检验: 对改进后的模型进行脉冲响应分析和因果关系检验。
# 脉冲响应分析
irf_response_improved <- irf(var_model_improved, impulse='log_coal', response='log_el', n.ahead = 10)
plot(irf_response_improved)

# 因果关系检验
granger_coal_improved <- causality(var_model_improved, cause = "log_coal")
print(granger_coal_improved)

请注意,在实际应用中,您可能需要根据数据的特点和模型诊断的结果进一步调整上述步骤。例如,如果模型的残差仍然存在问题,可能需要重新考虑模型的参数或选择不同的变换方式。此外,确保在每一步之后都仔细检查输出的模型诊断信息,以验证改进的效果。

0 条评论

发布
问题

在线
客服