• 智能AI问答!更聪明、更完整、原创作!
  • 一款基于GPT的超级AI机器人,可以回答问题、聊天、创作、写文案!

NameError: name 'model' is not defined. Did you mean: 'Model'?

发布于 2024-10-30 14:48:01

这个错误提示表明你的代码中引用了一个未定义的变量 model。看起来是因为在定义模型的最后部分代码中缺少了括号,导致 model 变量没有被正确定义。

以下是修正后的代码:


import tensorflow as tf
from tensorflow.keras.layers import Layer, Conv2D, Dense, Input, Reshape
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt

# 加载并准备MNIST数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 定义胶囊层
class CapsuleLayer(Layer):
    def __init__(self, num_capsules, dim_capsule, routings, **kwargs):
        super(CapsuleLayer, self).__init__(**kwargs)
        self.num_capsules = num_capsules
        self.dim_capsule = dim_capsule
        self.routings = routings

    def build(self, input_shape):
        # input_shape: (batch_size, height, width, channels)
        self.kernel = self.add_weight(
            shape=[input_shape[-1], self.num_capsules * self.dim_capsule],
            initializer='glorot_uniform',
            trainable=True,
            name='capsule_kernel'
        )

    def call(self, inputs):
        # inputs: (batch_size, height, width, channels)
        # Reshape inputs to (batch_size, height * width, channels)
        x = tf.reshape(inputs, (tf.shape(inputs)[0], -1, inputs.shape[-1]))

        # Calculate u_hat
        u_hat = tf.matmul(x, self.kernel)
        u_hat = tf.reshape(u_hat, (tf.shape(u_hat)[0], -1, self.num_capsules, self.dim_capsule))

        # Initialize the Logits (b) as zeros
        b = tf.zeros((tf.shape(inputs)[0], self.num_capsules), dtype=tf.float32)

        # Routing algorithm
        for i in range(self.routings):
            c = tf.nn.softmax(b, axis=1)  # Softmax over the capsules
            s = tf.matmul(tf.reshape(c, (tf.shape(c)[0], -1, 1)), u_hat, transpose_b=True)  # Weighted sum of u_hat vectors
            s = tf.squeeze(s, 2)  # Remove the singleton dimension
            v = tf.nn.squash(s)  # Squash the vector
            b = b + tf.reduce_sum(v, axis=2)  # Update the logits

        # Squash the final vectors
        v = tf.nn.squash(b[..., tf.newaxis])

        return tf.reshape(v, (tf.shape(inputs)[0], -1, self.num_capsules, self.dim_capsule))

    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1] * input_shape[2], self.num_capsules, self.dim_capsule)


# 构建胶囊网络模型
inputs = Input(shape=(28, 28, 1))
x = Conv2D(256, kernel_size=9, strides=2, padding='valid')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU()(x)

capsule_layer = CapsuleLayer(num_capsules=10, dim_capsule=16, routings=3)
primarycaps = capsule_layer(x)

# 将输出维度调整为 (batch_size, 10)
primarycaps = Reshape((-1, 10))(primarycaps)

outputs = Dense(10, activation='softmax')(primarycaps)

model = Model(inputs=inputs, outputs=outputs)  # 确保定义了 model 变量

# 定义损失函数
def margin_loss(y_true, y_pred):
    L = y_true * tf.square(tf.maximum(0., 0.9 - y_pred)) + 0.5 * (1 - y_true) * tf.square(tf.maximum(0., y_pred - 0.1))
    return tf.reduce_mean(tf.reduce_sum(L, axis=[1, 2]))

model.compile(optimizer='adam', loss=margin_loss, metrics=['accuracy'])
model.summary()

# 训练模型
history = model.fit(train_images, train_labels, epochs=50, validation_data=(test_images, test_labels), batch_size=100)

# 如果需要,还可以绘制训练和验证的损失及准确率曲线
plt.plot
0 条评论

发布
问题

在线
客服