三角函数是数学中的一个重要分支,它主要涉及角度与直角三角形边之间的关系。以下是一些基本的三角函数以及它们的转化公式:
正弦函数(sine, sin)
余弦函数(cosine, cos)
正切函数(tangent, tan)
余切函数(cotangent, cot)
正割函数(secant, sec)
余割函数(cosecant, csc)
三角恒等式:
毕达哥拉斯恒等式: [ \sin^2(\theta) + \cos^2(\theta) = 1 ]
正弦或余弦的性质: [ 1 + \tan^2(\theta) = \sec^2(\theta) ] [ 1 + \cot^2(\theta) = \csc^2(\theta) ]
和角公式: [ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) ] [ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) ] [ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} ]
差角公式: [ \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) ] [ \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) ] [ \tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)} ]
倍角公式: [ \sin(2\theta) = 2\sin(\theta)\cos(\theta) ] [ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) ] [ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} ]
半角公式: [ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}} ] [ \cos(\frac{\theta}{2}) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}} ] [ \tan(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} = \frac{\sin(\theta)}{1 + \cos(\theta)} ]
和差化积: [ \sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) ] [ \sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right