当然,我可以帮你编写这段代码。以下是使用TensorRT Python API进行yolov5推理的示例代码:
import tensorrt as trt
def load_plugins():
trt.init_libnvinfer_plugins(TRT_LOGGER, '')
def build_engine(engine_file):
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 设置最大工作空间大小
builder.max_batch_size = 1 # 设置最大批处理大小
if not builder.platform_has_fast_fp16:
builder.fp16_mode = True # 如果支持FP16,在builder中启用FP16模式
builder.strict_type_constraints = True # 将严格类型约束设置为true以提高推理性能
# 加载预编译的engine文件
with open(engine_file, 'rb') as f:
engine_data = f.read()
engine = builder.deserialize_cuda_engine(engine_data)
return engine
def prepare_input_output(engine):
input_name = engine.get_binding_name(0) # 获取输入绑定名称
output_name = engine.get_binding_name(1) # 获取输出绑定名称
# 分配主机内存和设备内存
input_shape = (batch_size, channels, height, width)
input_host_mem = cuda.pagelocked_zeros(input_shape, dtype=np.float32)
input_device_mem = cuda.mem_alloc(input_host_mem.nbytes)
output_shape = (batch_size, num_classes, output_height, output_width)
output_host_mem = cuda.pagelocked_zeros(output_shape, dtype=np.float32)
output_device_mem = cuda.mem_alloc(output_host_mem.nbytes)
return input_name, output_name, input_host_mem, input_device_mem, output_host_mem, output_device_mem
def do_inference(engine, context, input_host_mem, input_device_mem, output_host_mem, output_device_mem):
with engine.create_execution_context() as context:
bindings = [int(input_device_mem), int(output_device_mem)]
stream = cuda.Stream()
# 将输入数据从主机内存复制到设备内存
cuda.memcpy_htod_async(input_device_mem, input_host_mem, stream)
# 执行推理计算
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# 将输出结果从设备内存复制到主机内存
cuda.memcpy_dtoh_async(output_host_mem, output_device_mem, stream)
# 同步等待结果完成
stream.synchronize()
# 处理输出结果
# ...
# 加载plugins(例如BatchedNMS和YOLOLayer plugins等)
load_plugins()
# 构建engine
engine_file = 'yolov5s.engine'
engine = build_engine(engine_file)
# 准备输入输出
input_name, output_name, input_host_mem, input_device_mem, output_host_mem, output_device_mem = prepare_input_output(engine)
# 进行推理
do_inference(engine, context, input_host_mem, input_device_mem, output_host_mem, output_device_mem)
请确保已经安装了TensorRT Python API和相应的依赖库,并将代码中的batch_size
、channels
、height
、width
、num_classes
、output_height
和output_width
根据您的实际情况进行设置。
这是一个简单的示例代码,你需要根据自己的需求进行适当的修改和扩展。如果你对TensorRT和yolov5有更深入的了解,可以进一步优化和调整代码以达到更好的推理性能。