对于想了解个性化算法偏差(bias in personalized algorithms)的相关文章,这是一个当前备受关注的领域。以下是几篇可能对你有帮助的研究论文和文章的推荐:
"Algorithmic Bias in Machine Learning" by Sandyarsky, Iskander.
"Gender Shades: Intersectional Analysis of Gender and Skin Type Across AI" by Joy Buolamwini and Timnit Gebru.
"Explaining and Harnessing Adversarial Examples" by Goodfellow et al.
"Mitigating Unwanted Biases in AI" by Hannah Wallach, et al.
"Equality of Opportunity in Supervised Learning" by Hardt, Price, and Srebro.
"Detecting and Removing Bias in Simulators" by Jack Li, Tegan Maharaj, Raeid Saade, et al.
"The Ethical Algorithm: The Science of Socially Aware Algorithm Design" by Michael Kearns and Aaron Roth.
"A Roadmap for AI that Benefits Everyone" by MariaF.慢性病, Jacob Thelen, Arth q Gionfriddo, et al.
请注意,由于上述文章和资源可能涉及到较高的专业理论和技术细节,阅读之前你可能需要有一定的算法或机器学习基础。同时,由于小说研究进展迅速,可能会有更近期的研究成果产生,所以建议查阅最新的学术论文和期刊获取最新的信息与讨论。在一些开放获取的研究数据库如arXiv.org、Google Scholar等上可以找到这些论文的电子版。