关于算法偏差与公平性问题的学术研究相当丰富,以下是一些经常被引用的重要的参考文献和资料:
"Equality of Opportunity in Supervised Learning" by Moritz Hardt, Eric Price, and Nathan Srebro.
"Mitigating Bias in Algorithmic Hiring: Evaluating Claims and Practices" by Faisal Azam, Bernard R.ต่อตมжен et al.
"Algorithms, Fairness, and Accountability" by Hanna Wallach, Himabindu Lakkaraju, Samuel Gershman, and Finale Doshi-Velez.
"De-Biasing Strategies to Counteract Position Biases in Machine Learning Model Selection" by Zhangjie Cao, Ying Wei, and Haoze Sun.
"The Ethical Algorithm: The Science of Socially Aware Algorithm Design" by Michael Kearns and Aaron Roth.
"A Framework for Reducing Bias in Recidivism Prediction Instruments" by Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan.
"Understanding and Reducing_bias in Algorithmic Assessments and Hiring" by Fiona McNeill, Christine E. Exley, and Stefano DellaVigna.
"Learning Fair Representations" by Moritz Hardt, Benjamin Recht, and Yoram Singer.
"Fairness in Machine Learning" by Solon Barocas, Moritz Hardt, and Arvind Narayanan.
"Counterfactual Explanations for Discovering What-If Scenarios in Complex Systems" by Qiqi Zheng, Marynel Vazquez, and Cynthia Rudin.
这些文献涵盖了算法偏差和公平性问题的不同方面,包括理论探讨、具体实践案例、减低偏见的策略等。在研究算法公平性时,它们为研究人员和实践者提供了重要的理论支持和实践指导。