首先,我们需要将给定的电压和电流函数写成相位形式:
对于电压 ( u(t) ): [ u(t) = 100 \cos(\omega t + \phi) ] [ \omega = 100\pi ] [ \phi = \frac{\pi}{3} ]
对于电流 ( i(t) ): [ i(t) = 10 \sin(\omega t + \phi) ] 由于是正弦函数,我们需要将其转换为余弦形式,即 [ \sin(x) = \cos(x - \frac{\pi}{2}) ] 所以: [ i(t) = 10 \cos(100\pi t + 40^\circ - \frac{\pi}{2}) ] [ \omega = 100\pi ] [ \phi = 40^\circ - \frac{\pi}{2} ]
然后我们比较两个函数的相位项: [ \phi_u = \frac{\pi}{3} ] [ \phi_i = 40^\circ - \frac{\pi}{2} ] 将角度转换为弧度: [ 40^\circ = \frac{\pi}{450} \times 40 = \frac{2\pi}{9} ] [ \frac{\pi}{2} = \frac{2\pi}{4} = \frac{\pi}{2} ] [ \phi_i = \frac{2\pi}{9} - \frac{\pi}{2} = \frac{2\pi - 4.5\pi}{9} = -\frac{2.5\pi}{9} = -\frac{5\pi}{18} ]
接下来,我们求相位差 ( \Delta \phi ): [ \Delta \phi = \phi_u - \phi_i = \frac{\pi}{3} + \frac{5\pi}{18} ]
将上述两个分数相加: [ \Delta \phi = \frac{6\pi + 5\pi}{18} = \frac{11\pi}{18} ]
所以相位差为 ( \frac{11\pi}{18} ) 弧度,或者转换为度: [ \Delta \phi = \frac{11\pi}{18} \times \frac{180}{\pi} = 110^\circ ]
因此,相位差为 ( 110^\circ )。