• 智能AI问答!更聪明、更完整、原创作!
  • 一款基于GPT的超级AI机器人,可以回答问题、聊天、创作、写文案!

正整数r,s和t具有性质,即r × s × t = 1230。那么r + s + t的最小可能值是多少? (A) 51 (B) 52 (C) 54 (D) 58 (E) 53

发布于 2024-10-06 22:16:36

首先,对数字 1230 进行质因数分解来找到可能的正整数 r、s 和 t 的组合。

1230 = 2 × 3 × 5 × 41

考虑到 r、s 和 t 需要相乘得到 1230,且要求 r + s + t 的最小值,我们应该尽可能地让三个数相等或者接近,因为当三个数接近时它们的和会较小。

我们可以将这些因子分配给 r、s 和 t:

  1. 如果我们令 r = 2 × 3 = 6,s = 5,t = 41,那么: [ r \times s \times t = 6 \times 5 \times 41 = 1230 ] [ r + s + t = 6 + 5 + 41 = 52 ]

  2. 另一种分配方式可能是 r = 2,s = 3,t = 5 × 41 = 205,但这将导致 r + s + t 的和远大于 52。

因此,在所有可能的分配方式中,上述第一种分配方式能得到 r + s + t 的最小和。

所以,r + s + t 的最小可能值是 52。正确答案是 (B) 52。

0 条评论

发布
问题

在线
客服