要解方程 ( \frac{1}{x + \frac{1}{5}} = \frac{5}{3} ),可以按照以下步骤进行:
首先,将分数 ( \frac{1}{5} ) 转换为与 ( x ) 相同的分母: [ \frac{1}{5} = \frac{3x}{15x} ] 因此,方程变为: [ \frac{1}{x + \frac{3x}{15x}} = \frac{5}{3} ]
合并分母中的项: [ \frac{1}{\frac{15x + 3x}{15x}} = \frac{5}{3} ] [ \frac{1}{\frac{18x}{15x}} = \frac{5}{3} ] [ \frac{1}{\frac{6}{5}} = \frac{5}{3} ]
计算倒数: [ \frac{5}{6} = \frac{5}{3} ]
为了求解 ( x ),我们需要使方程两边相等: [ \frac{5}{6} = \frac{5}{3} \times \frac{1}{x + \frac{1}{5}} ]
将方程转换为: [ \frac{5}{6} = \frac{5}{3(x + \frac{1}{5})} ]
乘以分母消去分数: [ \frac{5}{6} \times 3(x + \frac{1}{5}) = 5 ] [ \frac{15}{6}(x + \frac{1}{5}) = 5 ] [ \frac{5}{2}(x + \frac{1}{5}) = 5 ]
进一步简化: [ \frac{5}{2}x + \frac{5}{10} = 5 ] [ \frac{5}{2}x + \frac{1}{2} = 5 ]
移项并解 ( x ): [ \frac{5}{2}x = 5 - \frac{1}{2} ] [ \frac{5}{2}x = \frac{9}{2} ]
最后,除以 ( \frac{5}{2} ): [ x = \frac{\frac{9}{2}}{\frac{5}{2}} ] [ x = \frac{9}{5} ]
因此,( x ) 的值为 ( \frac{9}{5} )。